Front cover image for Nitride Semiconductor Technology Power Electronics and Optoelectronic Devices

Nitride Semiconductor Technology Power Electronics and Optoelectronic Devices

Print Book, English, 2020
Wiley-VCH, Weinheim, 2020
480 Seiten 268 Illustrationen, 25 Illustrationen 24.4 cm x 17 cm
9783527347100, 3527347100
1148111633
Preface xi Acknowledgments xv 1 Introduction to Gallium Nitride Properties and Applications 1Fabrizio Roccaforte and Mike Leszczynski 1.1 Historical Background 1 1.2 Basic Properties of Nitrides 4 1.2.1 Microstructure and Related Issues 7 1.2.2 Optical Properties 13 1.2.3 Electrical Properties 16 1.2.4 Two-Dimensional Electron Gas (2DEG) in AlGaN/GaN Heterostructures 19 1.3 Applications of GaN-Based Materials 23 1.3.1 Optoelectronic Devices 24 1.3.2 Power- and High-Frequency Electronic Devices 26 1.4 Summary 30 Acknowledgments 31 References 31 2 GaN-Based Materials: Substrates, Metalorganic Vapor-Phase Epitaxy, and Quantum Well Properties 41Ferdinand Scholz, Michal Bockowski, and Ewa Grzanka 2.1 Introduction 41 2.2 Bulk GaN Growth 42 2.2.1 Hydride Vapor-Phase Epitaxy (HVPE) 43 2.2.2 Sodium Flux Growth Method 45 2.2.3 Ammonothermal Growth 46 2.3 MOVPE Growth 51 2.3.1 Basics About Nitride MOVPE 54 2.3.2 Epitaxy on Foreign Substrates 58 2.3.2.1 Sapphire as a Foreign Substrate 58 2.3.2.2 GaN on SiC and Si 60 2.3.3 Defect Reduction by ELOG, FACELO, etc. 62 2.3.4 In Situ ELOG by SiN Deposition 64 2.3.5 Doping of Nitrides 64 2.3.6 Growth of Other Binary and Ternary Nitrides 67 2.4 InGaN QWs: Growth and Decomposition 72 2.4.1 Growth of InGaN QWs on Polar, Nonpolar, and Semipolar GaN Substrates 72 2.4.2 Origins of In Fluctuations 75 2.4.3 Homogenization of InGaN QWs 78 2.4.4 Decomposition of the QWs 79 2.5 Summary 82 Acknowledgments 82 References 83 3 GaN-Based HEMTs for Millimeter-wave Applications 99Kathia Harrouche and Farid Medjdoub 3.1 Introduction 99 3.2 Targeted Applications for GaN Millimeter-wave Devices 99 3.2.1 High-Power Amplification 100 3.2.2 Broadband Amplifiers 102 3.2.3 5G 103 3.2.3.1 GaN for 5G 104 3.2.3.2 GaN Base Station PAs 106 3.2.3.3 Moving Forward to 6G 108 3.3 GaN-based Material Designs for Millimeter-wave Applications 108 3.3.1 Intrinsic Characteristics and Comparison with Other Materials for RF Devices 108 3.3.2 Specific Material Systems for RF Devices 114 3.4 Device Design and Fabrication of Millimeter-wave GaN Devices 116 3.4.1 Description of Key Processing Steps for Various GaN Device Designs 116 3.4.1.1 Device Scaling for Millimeter Wave 116 3.4.1.2 T-shaped Gate Design 116 3.4.1.3 Advanced Ohmic Contact Technology 117 3.4.1.4 N-polar GaN HEMTs 118 3.4.1.5 AlN-Based Device Performances 119 3.4.1.6 InAlGaN-Based Device Performances 121 3.4.2 State-of-the-art Millimeter-wave GaN Transistors 122 3.5 Overview of MMIC Power Amplifiers 123 3.5.1 MMIC Technology Using III-N Devices 123 3.5.1.1 III–V Material-Based MMIC Technology 123 3.5.1.2 Power Amplifiers 124 3.5.1.3 Low-Noise Amplifier 125 3.5.2 MMIC Examples from Ka-band to D-band Frequencies 125 3.6 Summary 126 References 127 4 Technologies for Normally-off GaN HEMTs 137Giuseppe Greco, Patrick Fiorenza, Ferdinando Iucolano, and Fabrizio Roccaforte 4.1 Introduction 137 4.1.1 Threshold Voltage in AlGaN/GaN HEMTs 138 4.2 GaN HEMT “Cascode” 140 4.3 “True” Normally-off HEMT Technologies 142 4.3.1 Recessed-gate HEMT 142 4.3.2 Fluorinated HEMT 145 4.3.3 Recessed-gate Hybrid MISHEMT 149 4.3.4 p-GaN Gate HEMT 155 4.4 Other Approaches 163 4.5 Summary 164 Acknowledgments 165 References 165 5 Vertical GaN Power Devices 177Srabanti Chowdhury and Dong Ji 5.1 Introduction 177 5.2 Vertical GaN Devices for Power Conversion 177 5.3 Vertical GaN Transistors 178 5.3.1 Current Aperture Vertical Electron Transistor (CAVET) 178 5.3.2 Vertical MOSFETs 182 5.4 High-Voltage Diodes in GaN 185 5.5 Avalanche Electroluminescence in GaN P–N Diodes 186 5.6 Impact Ionization Coefficients in GaN 188 5.6.1 Impact of Impact Ionization Studies on Predictive Modeling 193 5.7 Summary 193 Acknowledgments 193 References 194 6 Reliability Issues in GaN Electronic Devices 199Milan Ťapajna and Christian Koller 6.1 Introduction 199 6.1.1 Reliability Testing and Failure Analysis of GaN HEMTs 200 6.2 Reliability of GaN HEMTs for RF Applications 204 6.2.1 AlGaN/GaN HEMTs 204 6.2.1.1 Trapping Effects 204 6.2.1.2 Gate-edge Degradation 207 6.2.1.3 Hot Electron Degradation 209 6.2.2 InAlN/GaN HEMTs 211 6.2.2.1 Hot Electron Degradation 212 6.2.2.2 Role of Hot Phonons 214 6.2.3 Thermal Issues in RF GaN HEMTs 215 6.3 Reliability and Robustness of GaN Power Switching Devices 219 6.3.1 Parasitic Effects in the Carbon-Doped GaN Buffer 221 6.3.1.1 Insulation of GaN Buffer by Carbon Doping 221 6.3.1.2 Time-Dependent “Dielectric” Breakdown (TDDB) of the GaN Buffer 223 6.3.1.3 Dynamic RDS,ON Due to Buffer Trapping 225 6.3.2 Gate Degradation in p-GaN Switching HEMTs 230 6.3.3 Vth Instabilities in GaN MISHEMTs 233 6.3.3.1 Studies of PBTI in MISHEMTs 237 6.4 Summary 241 Acknowledgments 241 References 241 7 Light-Emitting Diodes 253Amit Yadav, Hideki Hirayama, and Edik U. Rafailov 7.1 Introduction 253 7.2 State-of-the-Art GaN LEDs 254 7.2.1 Blue LEDs 258 7.2.2 Green LEDs 262 7.3 GaN White LEDs: Approaches and Properties 264 7.3.1 Monolithic LEDs 267 7.3.2 Phosphor-Covered LEDs 271 7.4 AlGaN Deep UV LEDs 275 7.4.1 Growth of High-Quality AlN and Increasing in Internal Quantum Efficiency (IQE) 278 7.4.2 AlGaN-based UVC LEDs 281 7.4.3 Increasing the Light Extraction Efficiency (LEE) 282 7.5 Summary 287 Acknowledgments 288 References 288 8 Laser Diodes Grown by Molecular Beam Epitaxy 301Greg Muziol, Henryk Turski, Marcin Siekacz, Marta Sawicka, and Czeslaw Skierbiszewski 8.1 Introduction 301 8.2 III-N Growth Fundamentals by Plasma-Assisted MBE 303 8.2.1 Role of N-Flux for Efficient InGaN QWs 304 8.3 Wide InGaN QWs – Beyond Quantum-Confined Stark Effect 305 8.4 Long-Living Laser Diodes on Bulk Ammono-GaN 313 8.5 Laser Diodes with Tunnel Junctions 316 8.5.1 Stacks of Vertically Interconnected Laser Diodes 319 8.5.2 Distributed Feedback Laser Diodes 321 8.6 Summary 324 Acknowledgments 324 References 325 9 Edge Emitting Laser Diodes and Superluminescent Diodes 333Szymon Stanczyk, Anna Kafar, Dario Schiavon, Stephen Najda, Thomas Slight, and Piotr Perlin 9.1 Laser Diode: History and Development 333 9.1.1 Optoelectronics Background 333 9.1.2 Gallium Nitride Technology Breakthroughs 335 9.1.3 Development of Nitride Laser Diodes 337 9.2 Distributed Feedback Laser Diodes 342 9.3 Superluminescent Diodes 348 9.3.1 History of Superluminescent Diode Development 348 9.3.2 Basic SLD Properties 351 9.3.3 Challenges for SLD Optimization 353 9.4 Semiconductor Optical Amplifiers 354 9.5 Summary 357 References 358 10 Green and Blue Vertical-Cavity Surface-Emitting Lasers 367Yang Mei, Rong-Bin Xu, Huan Xu, and Bao-Ping Zhang 10.1 Introduction 367 10.1.1 Properties and Application of GaN VCSELs 367 10.1.2 Brief History and Current Status of GaN VCSELs 368 10.1.3 GaN VCSELs with Different DBRs 369 10.1.3.1 GaN VCSELs with Hybrid DBR Structure 370 10.1.3.2 GaN VCSELs with Double Dielectric DBR Structure 371 10.2 Efficiency of Heat Dissipation of Different Device Structures 372 10.2.1 Simulation of Heat Profile of the Device 372 10.2.2 Dependence of Rth on Cavity Length 373 10.3 Green VCSELs Based on InGaN QDs 375 10.3.1 Advantages of QDs Compared with QWs 375 10.3.2 Growth and Optical Properties of InGaN QDs 377 10.3.3 Fabrication Process of VCSELs 379 10.3.4 Properties of QD Green VCSELs 379 10.4 Green VCSELs Based on Cavity-Enhanced Emission of Localized States in Blue Emitting InGaN QWs 380 10.4.1 Cavity Effect 380 10.4.2 Properties of Cavity-Enhanced Green VCSELs 381 10.5 Dual-Wavelength Lasing Based on QD-in-QW Active Structure 384 10.5.1 Characteristics of QD-in-QW Structure 384 10.5.2 Lasing Characteristics of VCSELs 386 10.6 Blue VCSELs with Different Lateral Confinements 386 10.6.1 Design of Index-Guided Structure 386 10.6.2 Emission Properties of VCSELs with Lateral Confinement 388 10.7 Summary 389 References 390 11 Integration of 2DMaterials with Nitrides for Novel Electronic and Optoelectronic Applications 397Filippo Giannazzo, Emanuela Schilirò, Raffaella Lo Nigro, Pawel Prystawko, and Yvon Cordier 11.1 Introduction 397 11.2 Fabrication of 2D Material Heterostructures with Nitride Semiconductors 400 11.2.1 Transfer of 2D Materials Grown on a Foreign Substrate 400 11.2.2 Direct Growth of 2D Materials on Group III-Nitrides 403 11.2.3 2D Materials as Templates for the Growth of Nitride Semiconductor Films 407 11.3 Electronic Devices Based on 2D Materials/GaN Heterojunctions 413 11.3.1 Band-to-band Tunneling Diodes Based on MoS2/GaN Heterojunctions 413 11.3.2 Hot Electron Transistors with Graphene Base and Al(Ga)N/GaN Emitter 414 11.4 Optoelectronic Devices Based on 2D Material Junctions with GaN 421 11.4.1 GaN LEDs with Graphene-Transparent Conductive Electrodes 421 11.4.2 MoS2/GaN Deep UV Photodetectors 427 11.5 Applications of Graphene for Thermal Management in GaN HEMTs 428 11.6 Summary 431 Acknowledgments 431 References 432 Index 439