Abbildungen der Seite
PDF
EPUB

σχέσις, “relation”: ποιά σχέσις, “a sort of

relation” (in def. of ratio) II. 116-7
σχηματογραφεϊν, σχηματογραφία, representing

(numbers) by figures of like shape 1: 359
σχηματοποιούσα or σχήμα ποιούσα, “ forming

Tópvos, instrument for drawing a circle 1. 371
τοσαυταπλάσιον, “the same multiple” ΙΙ. 146
τρίγωνον, triangle : τριπλούν, το δι' αλλή-

λων, triple, interwoven triangle, = penta-

gram Il. 99
τριπλάσιος, triple, τριπλασίων, triplicate (of

ratios) 11. 133
τρίπλευρον, three-sided figure 1. 187
τυγχάνειν, happen: τυχόν σημείον, any point

at randonm I. 252: τυχούσα γωνία, “ 'any
angle” ΙΙ. 212: άλλα, α έτυχεν, ισάκις πολ.
λαπλάσια, “other, chance, equimultiples”

ΙΙ. 143-4
υπερβολή, exceeding, with reference to method

of application of areas 1. 36, 343-5,

386–7
υπερτελής or υπερτέλειος, “over-perfect” (of

a class of numbers) 11. 293-4
υπό, in expressions for an angle (ή υπό ΒΑΓ

γωνία) Ι. 249, and a rectangle 1. 370
υποδιπλάσιος, sub-duplicate, = half (Nico-

machus) 11. 280
υποκείμενος, laid down or assumed : το υπο-

κείμενον επίπεδον, the plane of reference

11Ι. 272
υπόκειται, “is by hypothesis” Ι. 303, 312
υποπολλαπλάσιος, submultiple (Nicomachus)

ΙΙ. 28ο
υποτείνειν, subtend, with acc. or υπό and acc.

1. 249, 283, 350
ύψος, height II. 189

a figure " (of a line or curve) 1. 160-1
ταυτομήκης, of square number (Nicomachus)

ΙΙ. 293

ταυτότης λόγων, “sameness of ratios” 11. 19
τέλειος, perfect (of a class of numbers) Π.

293-4
τεταγμένος, “ordered”: τεταγμένον πρόβλημα,

ordered problem Ι. Ι28: τεταγμένη
αναλογία, « ordered” proportion II. 137
τεταραγμένη αναλογία, perturbed proportion

11. 136
τετραγωνισμός, squaring, definitions of, I. 149-

50, 410
τετράγωνον, square: Sometimes (but not in

Euclid) any four-angled figure 1. 188
τετράπλευρον, quadrilateral I. 187: not a

“polygon" 11. 239
τμήμα κύκλου, segment of a circle: τμήματος

γωνία, angle of a segment 11. 4: έν τμήματι

γωνία, angle in a segment II.
τομεύς (κύκλου), sector (of a circle): σκυτοτο-

μικός τομεύς, “ shoemaker's knife” ΙΙ. 5
τομή, section, = point of section I. 170, 171,

278: κοινή τομή, common section

263
TOMOELÒńs (of figure), sector-like II. 5
τοπικών θεώρημα, locus-theorem I. 329
τόπος, locus I. 329-31 : = room

or space
1. 23 n.: place (where things may be
found), thus τόπος αναλυόμενος, Treasury
of Analysis I. 8, Ιο, παράδοξος τόπος,
Treasury of Paradoxes, I. 329

III.

χωρίον, area ΙΙ. 254

ωρισμένη γραμμή, determinate line (curve),

“ forming a figure” 1. '160

GENERAL INDE X.

[The references are to volumes and pages.]

equal to k', 11. 58–60: if a+Jb=x+vy,

then a=x, b=y, III. 93-4, 167-8
'Ali b. Aḥmad Abū 'l Qāsim al-Antaki 1. 86
Allman, G. J. 1. 135 n., 318, 352, III. 18–

9, 439
Alternate: (of angles) 1. 308: (of ratios),

alternately 11. 134
Alternative proofs, interpolated 1. 58, 59:

cf. in. 9 and following 11. 22: that in

III. 10 claimed by Heron II. 23-4
Amaldi, Ugo l. 175, 179-80, 193, 201, 313,

328, II. 30, 126
A mbiguous case I. 306–7: in vi. 7, II. 208-9
Amphinomus I. 125, 128, 150 n.
Amyclas of Heraclea 1. 117
Analysis (and synthesis) 1. 18: definitions

of, interpolated, 1. 138, 111. 442: described
by Pappus 1. 138-9: mystery of Greek
analysis III. 246: modern studies of Greek
analysis I. 139: theoretical and problem-
atical analysis 1. 138: Treasury of Analy-
sis (τόπος αναλυόμενος) Ι. 8, το, ΙΙ, 138:
method of analysis and precautions neces-
sary to, 1. 139-40: analysis and synthesis
of problems I. 140—2: two parts of analysis
(a) transformation, (b) resolution, and two
parts of synthesis, (a) construction, (b)
demonstration

141: example from
Pappus 1. 141-2: analysis should also
reveal ôlopio uós (conditions of possibility)
1. 142: interpolated alternative proofs of
XII. 1-5 by analysis and synthesis 1. 137,

I.

al-'Abbās b. Sa'id al-Jauhari I. 85.
“ Abthiniathus” (or “ Anthisathus '') 1. 203
Abū 'l 'Abbās al-Fadl b. Hâtim, see an-

Nairizi
Abū 'Abdallah Muḥ. b. Mu'adh al-Jayyāni
I.

90
Abū 'Ali al-Basri 1. 88
Abū 'Ali al-Hasan b. al-Hasan b. al-Haitham

I. 88, 89
Abū Dā'úd Sulaiman b. 'l'qba 1. 85, 90
Abū Ja'far al-Khāzin 1. 77, 85
Abū Ja'far Muḥ. b. Muh. b. al-Hasan

Naşiraddin at-Tūsi, see Naşiraddin
Abū Muḥ. b. Abdalbāqi al-Bagdādi al-Faradi

1. 8 n., 90

Abū Muh. al-Hasan b. 'Ubaidallāh b. Sulai-

man b. Wahb 1. 87
Abū Nașr Gars al-Na'ma 1. 90
Abū Nașr Mansür b. ‘Ali b. 'Irāq 1. 90
Abū Nasr Muḥ. b. Muḥ. b. Tarkhán b.

Uzlag al-Fārābi 1. 88
Abū Sahl Wijan b. Rustam al-Kūhi 1. 88
Abū Sa'id Sinan b. Thābit b. Qurra 1. 88
Abū 'Uthmān ad-Dimashqi 1. 25, 77
Abū 'l Wasā al-Buzjāni 1. 77, 85, 86
Abū Yūsuf Ya'qub b. Ishaq b. aş-Şabbāḥ al-

Kindi 1. 86
Abū Yusuf Ya'qūb b. Muḥ. ar-Rāzi 1. 86
Adjacent (épegns), meaning 1. 181
Adrastus II. 292
Aenaeas (or Aigeias) of Hierapolis 1. 28, 311
Aganis I. 27-8, 191
Ahmad b. al-Husain al-Ahwāzi al-Kātib 1. 89
Ahmad b. 'Umar al-Karábīsi I. 85
al-Ahwāzi I. 89
Aigeias (? Aenaeas) of Hierapolis I. 28, 311
Alcinous II. 98
Alexander Aphrodisiensis 1. 7 n., 29, 11. 120
Algebra, geometrical 1. 372–4 : classical

method was that of Eucl. 11. (cf. Apol-
lonius) 1. 373: preferable to semi-alge:
braical method 1. 377-8: semi-algebraical
method due to Heron 1. 373, and favoured
by Pappus 1. 373 : geometrical equivalents
of algebraical operations 1. 374: algebraical
equivalents of propositions in Book 11., I.
372–3: equivalents in Book x. of pro-
positions in algebra, vk-cannot be

Ill. 442-3

M

Analytical method 1. 36: supposed discovery

of, by Plato I. 134, 137
Anaximander 1. 370, II. III
Anaximenes II. III
Anchor-ring 1. 163
Andron 1. 126
Angle: curvilineal and rectilineal, Euclid's

definition of, 1. 176 sq. : definition criti-
cised by Syrianus i. 176: Aristotle's notion
of angle as kláris I. 176: Apollonius' view
of, as contraction 1. 176, 177: Plutarch and
Carpus on, I. 177: to which category does
it belong? quantum, Plutarch, Carpus,
“ Aganis

1. 177, Euclid 1. 178; quale,
Aristotle and Eudemus 1. 177-8: relation,
angle III. 261, 267-8
Annex (at poo apubšovo a) = the straight line

66

[ocr errors]

:

[ocr errors]

Euclid I. 178: Syrianus' compromise
1. 178: treatise on the Angle by Eudemus
1. 34, 38, 177–8: classification of angles
(Geminus) 1. 178-9: curvilineal and
“mixed” angles 1. 26, 178–9, horn-like
(kepatoeldhs) 1. 177, 178, 182, 265, 11. 4,
39, 40, lune-like (unvoelońs) 1. 26, 178-9,
scraper-like (qvot poeLOńs) 1. 178: angle of a
segment 1. 253, II. 4: angle of a semi-
circle 1. 182, 253, II. 4: controversies about
“ angle of semicircle" and hornlike angle
II. 39-42: definitions of angle classified
1. 179: recent Italian views 1. 179-81:
angle as cluster of straight lines or rays
1. 180-1, defined by Veronese 1. 180: as
part of a plane (“'angular sector”) 1. 179-
80: flat angle (Veronese etc.) .. 180-1,
269: three kinds of angles, which is prior
(Aristotle)? 1. 181-2: angles not less than
two right angles not recognised as angles
(cf. Heron, Proclus, Zenodorus) 11. 47-9:
did Euclid extend “angle” to angles
greater than two right angles in vi. 33?
11. 275-6: adjacent angles 1. 181: alternate
1. 308: similar ( = equal) 1. 178, 182, 252:
vertical 1. 278: exterior and interior
(to a figure) 1. 263, 280: exterior when
re-entrant 1. 263, in which case we have a
hollow-angled figure 1. 27, 188, 11. 48:
interior and opposite 1. 280: construction
by Apollonius of angle equal to angle
1. 296: angle in a semicircle, theorem of,
1. 317-9: trisection of angle, by con-
choid of Nicomedes 1. 265–6, by quadratrix
of Hippias I. 266, by spiral of Archimedes
1. 267: dihedral angle II. 264-5: solid

treatise” 1. 42: constructions by, for
bisection of straight line 1. 268, for a
perpendicular 1. 270, for an angle equal to
an angle 1. 296 : on parallel-axiom (?)
1. 42-3: adaptation to conics of theory of
application of areas 1. 344-5: geometrical
algebra in, 1.373: Plane Loci, I. 14, 259, 330,
theorem from (arising out of Eucl. vi. 3),
also found in Aristotle 11. 198-200: Plane
VEÚDELS 1. 151, problem from, 11. 81, lemma
by Pappus on, 11. 64-5: comparison of do-
decahedron and icosahedron 1. 6, III. 439,
512, 513 : on the cochlias 1. 34, 42, 162:
on "unordered” irrationals 1. 42, 115, 111.
3, 10, 246, 255-9: general definition of ob-
lique (circular) cone 111. 270: 1. 138, 188,
221, 222, 246, 259, 370, 373, II. 75, 190,

258, 111, 264, 267
A potome : compound irrational straight line
(difference between two "terms ") 111. 7:
defined 111. 158–9: connected by Theae-
tetus with harmonic mean III. 3, 4:
biquadratic from which it arises 11. 7:
uniquely formed 111. 167–8: first, second,
third, fourth, fifth and sixth apotomes,
quadratics from which arising ini. 5-6,
defined u. 177, and found respectively
(x. 85-90) 11. 178–90: apotome equivalent
to square root of first apotome III. 190–4:
first, second, third, fourth, fifth and sixth
apotomes equivalent to squares of apotome,
first apotome of a medial etc. III. 212-29:
apotome cannot be binomial also III. 240-2:
different from medial (straight line) and
from other irrationals of same series with
itself 111. 242 : used to rationalise binomial

with proportional terms III. 243-8, 252-4,
A potome of a medial (straight line): first and

second, and biquadratics of which they are
roots III. 7: first apotome of a medial
defined 111. 159-60, uniquely formed i11.
168–9, equivalent to square root of second
apotome III. 194-8: second apotome of a
medial, defined 111. 161–2, uniquely formed
111. 170–2, equivalent to square root of

third apotome II. 199–202
Application of areas 1. 36, 343-5: contrasted
with exceeding and falling-short I. 343:
complete method equivalent to geometrical
solution of mixed quadratic equation 1.
344-5, 383-5, 386–8, II. 187, 258-60,
263-5, 266–7: adaptation to conics (Apol.
lonius) 1. 344-5: application contrasted

with construction (Proclus) 1. 343
Approximations : 7/5 as approximation to 12

(Pythagoreans and Plato) 11. 119: approxi-
mations to 13 in Archimedes and (in
sexagesimal fractions) in Ptolemy II. 119:
to * (Archimedes) 11. 119: to na

4500
(Theon of Alexandria) 11. 119: remarkably
close approximations (stated in sexagesimal

fractions) in scholia to Book X., III. 523
· Aqaton

I. 88
Arabian editors and commentators 1. 75-

90

which, when added to a compound ir.
rational straight line formed by subtraction,
makes up the greater “term,” i.e. the

negative
al-Antāki 1. 86
Antecedents (leading terms in proportion) 1.

134
“Anthisathus” (or “Abthiniathus") 1. 203
Antiparallels : may be used for construction

of vi. 12, 11. 215
Antiphon 1. 7 n., 35
Āpastamba-Gulba-Sutra 1. 352: evidence in,
as to early discovery of Eucl. 1. 47 and use
of gnomon 1. 360-4: Bürk's claim that
Indians had discovered the irrational 1.
363-4: approximation to J2 and Thibaut's
explanation 1. 361, 363-4: inaccurate

values of u in, l. 364
Apollodorus "Logisticus” 1. 37, 319, 351
Apollonius : disparaged by Pappus in com-

parison with Euclid 1. 3: supposed by
some Arabians to be author of the Ele-
ments 1. 5: a “carpenter

I. 5: on ele-
mentary geometry i. 42 : on the line 1.
159: on the angle 1. 176: general defini.
tion of diameter 1. 325: tried to prove
axioms 1. 42, 62, 222-3: his “general

term

III. 159

a

Arabic numerals in scholia to Book X.,

uth c., I. 71, II. 522
Archimedes: " postulates” in, 1. 120, 123:

"porisms” in, 1. u n., 13: on straight
line 1. 166: on plane 1. 171-2: Liber
assumptorum, proposition from, II. 63:
approximations to V3, square roots of large
numbers and to i, 11. 119: extension of
a proportion between commensurables to
cover incommensurables 11. 193: “Axiom”
of (called however “ lemma," assumption,
by A. himself) 1. 234: relation of “Axiom”
to X. 1, III. 15-6: “ Axiom ” already
used by Eudoxus and mentioned by
Aristotle 11. 16: proved by means of
Dedekind's Postulate (Stolz) III. 16: on
discovery by Eudoxus of method of ex-
haustion ni. 363–6, 374: new fragment
of," method (č podos) of Archimedes about
mechanical theorems,” or épádlov, dis.
covered by Heiberg and published and
annotated by him and Zeuthen 11. 40, NII.
366–8, adds new chapter to history of
integral calculus, which the method actually
is, III. 366-7: application to area of para-
bolic segment, ibid.: spiral of Archimedes
1. 26, 287: 1. 116, 142, 225, 370, 11, 136,

190, III. 246, 270, 375, 521
Archytas 1. 20: proof that there is no

numerical geometric mean between n and

n+ 1 II. 295
Areskong, M. E. 1. 113
Arethas, Bishop of Caesarea 1. 48: owned

Bodleian Ms. (B) 1. 47–8: had famous
Plato Ms. of Patmos (Cod. Clarkianus)

written 1. 48
Argyrus, Isaak 1. 74
Aristaeus I. 138: on conics I. 3: Solid Loci

1. 16, 329: comparison of five (regular

solid) figures I. 6, . 438-9, 513
Aristotelian Problems 1. 166, 182, 187
Aristotle: on nature of elements 1. 116: on

first principles 1. 177 sqq.: on definitions
1: 117, 119-20, 143-4, 146-50: on distinc-
tion between hypotheses and definitions

119, 120, between hypotheses and
postulates I. 118, 119, between hypotheses
and axioms I. 120: on axioms 1. 119–21:
axioms indemonstrable 1. 121: on defini-
tion by negation 1. 156–7: on points 1.
155-6, 165: on lines, definitions of, 1.
158-9, classification of, 1. 159-60 : quotes
Plato's definition of straight line 1. 166:
on definitions of surface 1. 170: definition
of “body” as that which has three
dimensions or as “ depth" 11. 262 : body
“bounded by surfaces (επιπέδους) IΙI.
263: speaks of six“ dimensions "I11. 263:
definition of sphere III. 269: on the angle
1. 176-8: on priority as between right and
acute angles I. 181-2: on figure and
definition of, 1. 182-3: definitions of
“squaring" 1. 149-50, 410: on parallels
1. 190-2, 308-9: on gnomon 1. 351, 355,
359: on attributes κατά παντός and πρώτον

kablov 1. 319, 320, 325: on the objection
1. 135: on reduction I. 135: on reductio ad
absurdum I. 136: on the infinite I. 232-4:
supposed postulate or axiom about diver-
gent lines taken by Proclus from, 1. 45,
207: gives pre-Euclidean proof of Eucl. i.
5, 1. 252–3: on theorem of angle in a semi-
circle 1. 149; has proof (pre-Euclidean)
that angle in semicircle is right 11. 63:
on sum of angles of triangle 1. 319-21:
on sum of exterior angles of polygon 1.
322 : on def. of sanie ratio (= same
ávravaipeous) 11. 120-1 : on proportion as
"equality of ratios” 11. 119: on theorem in
proportion (alternando) not proved generally
till his time 11. 113: on proportion in three
terms (ouvexńs, continuous), and in four
terms (dypnuévn, discrete) 11. 131, 293 : on
alternate ratios II. 134: on inverse ratio 11.
134, 149: on similar rectilineal figures II.
188: has locus-theorem (arising out of
Eucl. vi. 3) also given in Apollonius'
Piane Loci 11. 198-200: on unit 11. 279:
on number 11. 280 : on non-applicability of
arithmetical proofs to magnitudes if these
are not numbers 11. 113: on definitions of
odd and even by one another 11. 281: on
prime numbers 11. 284-5: on composite
numbers as plane and solid 11. 286, 288,
290:, on representation of numbers by
pebbles forming figures 11. 288: gives
proof (no doubt Pythagorean) of incom-
mensurability of N2, III. 2: 1. 38, 45, 117,
150 n., 181, 184, 185, 187, 188, 195, 202,
203, 221, 222, 223, 226, 259, 262-3, 283,
II. 2, 4, 22, 79, 112, 135, 149, 159, 160,

[ocr errors]

165, 184, 188, 189, III. 4
Arithmetic, Elements of, anterior to Euclid

II. 295

I.

:

al-Arjāni, Ibn Rāhawaihi 1. 86
Ashkāl at-ta'sis 1. 5 n.
Ashraf Shamsaddin as-Samarqandi, Muḥ. b.

1. 5 n., 89
Astaroff, Ivan 1. 113
Asymptotic (non-secant): of lines 1. 40, 161,

203: of parallel planes 111. 265
Atheihard of Bath i. 78, 93-6
Athenaeus of Cyzicus 1. 117
August, E. F. 1. 103, 11. 23, 25, 149, 238,

256, 412, 111. 2, 48
Austin, W. 1. 103, III, II. 172, 188, 211, 259
Autolycus, On the moving sphere, 1. 17
Avicenna, 1. 77, 89
“Axiom of Archimedes” 11. 15-6: already

used by Eudoxis, III. 15, and mentioned by
Aristotle, ul. 16: relation of, to Eucl. x.

III.15.) inquished from postulates by
I,
Axioms,

Aristotle 1. 118-9, by Proclus (Geminus
and “others ") 1. 40, 121-3: Proclus on
difficulties in distinctions I. 123-4: distin.
guished from hypotheses, by Aristotle 1.
1 20-1, by Proclus 1. 121-2: indemonstrable
1. 121: attempt by Apollonius to prove 1.
222–3 : =“common (things)” or “common

[ocr errors]

66

opinions” in Aristotle 1. 120, 221: com-
mon to all sciences 1. 119, 120: called

common notions " in Euclid 1. 121, 221 :
which are genuine ? 1. 221 sqq.: Proclus
recognises five I. 222, Heron three 1. 222 :
interpolated axioms 1. 224, 232: Pappus'
additions to axioms 1. 25, 223, 224, 232:
axioms of congruence, (1) Euclid's Common
Notion 4, I. 224-7, (2) modern systems
(Pasch, Veronese and Hilbert) 1. 228–31 :
"axiom" with Stoics = every simple
declaratory statement 1. 41, 221 : axioms
tacitly assumed, in Book v., II. 137, in

Book VI., II. 294
Axis: of sphere 11. 261, 269: of cone III.

261, 271; of cylinder 111. 262, 271

II. II2

Babylonians: knowledge of triangle 3, 4, 5,

1. 352: supposed discoverers of “ harmonic

proportion
Bacon, Roger I. 94
Baermann, G. F. 11. 213
Balbus, de mensuris 1. 91
Baltzer, R. II. 30
Barbarin 1. 219
Barlaam, arithmetical commentary on Eucl.

II., 1. 74
Barrow: on Eucl. v. Def. 3, II. 117: on

v. Def. 5, II. 121: I. 103, 105, 110, 11,

II. 56, 186, 238
Base: meaning I. 248-9: of cone 111. 262:

of cylinder III. 262
Basel editio princips of Eucl., 1. 100-1
Basilides of Tyre 1. 5, 6, II, 512
Bāudhāyana Sulba-Sūtra 1. 360
Bayfius (Baïf, Lazare) 1. 100
Becker, J. K. I. 174
Beez 1. 176
Beltrami, E. 1. 219
Benjamin of Lesbos 1. 113
Bergh, P. 1. 400-I
Bernard, Edward 1. 102
Besthorn and Heiberg, edition of al-Hajjāj's

translation and an-Nairizi's commentary

1. 22, 27 n., 79 n.
Bhaskara 1. 355
Billingsley, Sir Henry, 1. 109-10, 11. 56, 238,

III. 48
Bimedial (straight line): first and second,

:

and found respectively (x. 48–53) 11. 102-
15, are equivalent to squares of binomial,
first bimedial etc. III. 132-45: binomial
equivalent to square root of first binomial
11. 116-20: binomial uniquely divided,
and algebraical equivalent of this fact iii.
92–4: cannot be a potome also III. 240-2:
different from medial (straight line) and
from other irrationals (first bimedial etc.)
of same series with itself III. 242: used to
rationalise apotome with proportional terms

III. 248-52, 252-4
al-Biruni 1. 90
Björnbo, Axel Anthon 1. 17 n., 93
Boccaccio I. 96
Bodleian Ms. (B) 1. 47, 48, III. 52 I
Boeckh 1. 351, 371
Boethius 1. 92, 95, 184, 11. 295
Bologna Ms. (b) 1. 49
Bolyai, 1. 1. 219
Bolyai, W. 1. 174-5, 219, 328
Bolzano l. 167
Boncompagni 1. 93 n., 104 n.
Bonola, R. I. 202, 219, 237
Borelli, Giacomo Alfonso I. 106, 194, II. 2, 84
Boundary (Öpos) 1. 182, 183
Bråkenhjelm, P. R. I. 113
Breadth (of numbers) = second dimension or

factor II. 288
Breitkopf, Joh. Gottlieb Immanuel 1. 97
Bretschneider 1. 136 n., 137, 295, 304, 344,

354, 358, III. 439, 442
Briconnet, François 1. 100
Briggs, Henry 1. 102, 11. 143
Brit. Mus. palimpsest, 7th-8th C., I. 50
Bryson, l. 8 n.
Bürk, A. I. 352, 360-4
Bürklen 1. 179
Buteo (Borrel), Johannes 1. 104.

and biquadratic equations of which they
are roots III. 7: first bimedial defined ii.
84-5, equivalent to square root of second
binomial 111. 84, 120-3, uniquely divided
III. 94-5: second bimedial" defined ini.
85-7, equivalent to square root of third

binomial 11. 84, 124-5, uniquely divided
Binomial (straight line): compound ir-

rational straight line (sum of two "terms”)
III. 7: defined 111. 83, 84: connected by
Theaetetus with arithmetic mean III. 3, 4:
biquadratic of which binomial is a positive
root III. 7: first, second, third, fourth,
fifth and sixth binomials, quadratics from
which arising III. 5-6, defined i11. 101-2,

Cabasilas, Nicolaus and Theodorus 1. 72
Caiani, Angelo 1. for
Camerarius, Joachim 1. 101, III. 523
Camerer, J. G. I. 103, 293, II. 22, 35, 28,

33, 34, 40, 67, 121, 131, 189, 213, 244
Çamorano, Rodrigo, 1. 112
Campanus, Johannes 1. 3, 78, 94-6, 104,

106, 110, 407, II. 28, 41, 56, 90, 116, 119,
121, 146, 189, 211, 234, 235, 253, 275,

320, 322, 328
Candalla, Franciscus Flussates (François de

Foix, Comte de Candale) 1. 3, 104, 110,

11. 189
Cantor, Moritz 1. 7 n., 20, 272, 304, 318,

320, 333, 352, 355, 357–8, 360, 401, II. 5,

40, 97, III. 8, 15, 438
Cardano, Hieronimo II. 41, III. 8
Carduchi, L. 1. 112
Carpus, on Astronomy, 1. 34, 43: 45, 127,

Ill. 95-7

128, 177

Case, technical term 1. 134: cases inter-

polated 1. 58, 59: Greeks did not infer

limiting cases but proved them separately
Casey, J. II. 227

II. 75

« ZurückWeiter »