Abbildungen der Seite
PDF

oder, da die Winkelsumme im n-Eck (2 n — 4) R beträgt, in: L_ kxk2 + z_ k2ks + ....+ L- kkx <4Ä

Fällt man von einem Punkt im Innern eines «-Kants der Reihe nach Lote auf seine Seitenflächen, so bestimmen die aufeinanderfolgenden Lote die Seitenflächen eines neuen w-Kants, des Polarn-kants. Daraus folgt sofort, daß auch die Kanten des ursprünglichen n-Kants auf den bezüglichen Seitenflächen seines Polar-n-kants senkrecht stehen; und es ist weiter ersichtlich, daß die Kantenwinkel eines jeden von ihnen die Supplemente der entsprechenden Flächenwinkel des anderen sind. Dabei sind solche Kanten und Seiten als entsprechend aufgefaßt, die aufeinander senkrecht stehen.

Die Summe der Winkel (Flächenwinkel) eines konkaven n-Kants ist > (2n — 4) R. Denn für das zugehörige Polar-n-kant, das ebenfalls konkav ist, ist nach dem vorangehenden Satze die Summe der Seiten < 4 R, also die Summe der zugehörigen Supplementwinkel > (2n — 4)R; diese sind aber jenen Flächenwinkeln gleich.

112. Wie in der Ebene die Konstruktion der n-Ecke auf die der Dreiecke zurückgeführt wird, so wird im Raume die Konstruktion der n-Kante auf die der Dreikante reduziert. Wir werden uns deshalb weiterhin ausführlicher mit den Dreikanten zu beschäftigen haben. In einem Dreikant sind alle Winkel und alle Seiten < 2 R. Seine Kanten sollen durchweg mit a, b, c, die gegenüberliegenden Seiten mit A, B, T bezeichnet werden, so daß A = bc, B = ca, V = ab und a = BxT, 4 = T x A, c = A x B ist.

A, B, T bedeuten dann zugleich die Kantenwinkel, und a, b, c die Flächenwinkel des Dreikants. Nach den vorausgeschickten Untersuchungen haben wir die Ungleichungen: 0<A+B+r<4£ und 2 R< a + b + c < 6 R. Hierzu kommen noch die Ungleichungen:

A + B>t, B + T>a, r + A>B,

welche besagen, daß die Summe zweier Seiten größer als die dritte ist. Es ist hier nicht nötig, diese letzteren Ungleichungen zu beweisen, da sie bei der folgenden Konstruktion des Dreikants aus seinen drei Seiten sofort als richtig erkannt werden. Mit Hilfe des Polardreikants folgern wir aus den letzten Ungleichungen noch die weiteren:

a + b<2R + c, b + c<2R + a, c + a<2R + b.

Von den sechs Bestimmungsstücken (drei Seiten und drei Winkeln) eines Dreikants genügt es irgend drei zu kennen, um das zugehörige Dreikant konstruktiv zu bestimmen. Soll die Konstruktion nicht unmöglich werden, so dürfen die gegebenen Stücke den angeführten Ungleichungen nicht widersprechen. Es ergeben sich nun die folgenden 6 Aufgaben: Ein Dreikant zu konstruieren von PA auf P0M, so erhält man P' und damit b'. Dreht man die Seite ba V um die Kante a, so beschreibt die Projektion von P eine Senkrechte zu a und es gelaugt P nach P°, wobei SP0 = SP° ist. Auch kann man LP0 = LP& aus dem rechtwinkligen Dreieck PWL, dessen Katheten P&P'= PAP' und P'L man kennt, bestimmen. Hiermit ist V und a = i_ P&LF gefunden; der dritte Winkel des Dreikants bestimmt sich wie vorher.

1. aus: A,B,r — seinen drei Seiten,

2. aus: A,B,c — zwei Seiten und dem eingeschlossenen

Winkel,

3. aus: A,B, a — zwei Seiten und dem einer von ihnen

gegenüberliegenden Winkel,

4. aus: h,b,c — einer Seite und den beiden anliegenden

Winkeln,

5. aus: A, a, b — einer Seite, einem anliegenden und einem

gegenüberliegenden Winkel,

6. aus: a, b, c — seinen drei Winkeln.

Diese Aufgaben lassen sich unter Benutzung des Polardreikants paarweise aufeinander zurückführen. Die Aufgaben 3. und 5. lassen, wie wir später sehen werden, eventuell zwei Lösungen zu, alle anderen jedoch stets nur eine Lösung, abgesehen davon, daß es zu jeder Lösung eine symmetrische giebt.

113. Konstruktion des Dreikants aus seinen drei Seiten A. B, T. Wir denken uns das Dreikant mit der Seitenfläche T in der Zeichenebene liegend, trennen es längs der Kante c auf und legen die Seiten A = bc und B = ac um die bezüglichen Kanten b und a in die Zeichen

ebene nieder, so
die gegebenen Seiten
am Scheitel S neben-
einander zu liegen kom-
men (vergl. Fig. 88).
Gehen wir von dieser
Lage aus, so gewinnen
wir das Dreikant, indem
wir die Seiten A und B
um die Kanten b und a
zurückdrehen, bis die
Kanten c0 und c° in c
zusammenfallen. Dann
fallt auch P„ mit P°

[graphic]
[ocr errors]

in P zusammen, wenn wir £P0= SP° wählen. Bei dieser Drehung beschreibt P0 einen Kreisbogen um a als Achse, d. h. die Projektion

dieses Punktes bewegt sich auf einer Senkrechten zu a; ebenso bewegt sich bei der Drehung von P° um b seine Projektion auf einer Senkrechten zu b. Der Schnittpunkt P' dieser Senkrechten ist die Projektion des Raumpunktes P, also c'= SP' die Projektion der Kante c. Legt man die Ebenen jener Kreisbogen P0P und P°P in die Zeichenebene um, so erhält man die Kreisbogen P0PA und P°PA, wobei PPAJ_PP0 und P'P& ± P'P° ist. Zugleich giebt P'PA = P'PA = PP die Höhe des Punktes P über der Zeichen ebene an, und ferner ist: i_ P'MP& = i_ b und i_ P'LPA = L. a. Um noch i_ c zu erhalten, errichte man in P auf der Kante c eine senkrechte Ebene, die die Kanten a und b in A und B schneidet, dann ist Z_ APB = L_ c. Hiernach stehen PA und PB auf c senkrecht, also ist P°B J_ c° und P0A ± c0, und AB J_ c' als Spur einer zu c senkrechten Ebene. Legt man das Dreieck APB um seine Seite AB in die Zeichenebene um, so kommt P* — die umgelegte Ecke — auf c zu liegen und es ist P*A = P0A, P*B = P°B und t_ AP*B

Natürlich giebt es zwei Dreikante, die symmetrisch in Bezug auf die Zeichenebene liegen. Die ganze Aufgabe stimmt in ibrem Wesen mit der in 99 behandelten überein. Auch erkennt man leicht, daß es nur dann eine Lösung giebt, wenn A + B > T ist. was zwei analoge Relationen nach sich zieht.

114. Konstruktion des Dreikants aus zwei Seiten A, B und dem eingeschlossenen Winkel c (Fig.89). Man lege die Seiten

Senkrechte zu c.

Durch Umlegen des Kreisbogens in die Zeichenebene ergiebt sieb der Bogen P0P^, dessen Centriwinkel = 2 R c ist. Lotet man

[ocr errors]
[graphic][ocr errors][merged small]

115. Konstruktion des Dreikants aus einer Seite A und den beiden anliegenden Winkeln b und c. Die Seite A lege man in die Zeichenebene und durch ihre Kanten b resp. c lege man Ebenen, die mit ihr den Winkel b resp. c einschließen; die Schnittlinie dieser Ebenen ist die gesuchte Kante a. Um a zu konstruieren, ziehe man in den Ebenen ab = V und ac = B Hauptlinien, die in einer Parallelebene zur Zeichenebene liegen. In

Fig. 90 sind Q'P' und RP' die Projektionen solcher Hauptlinien, wenn QAQ' = R^R ist. Denn offenbar ist R die Projektion eines Punktes R der Ebene ac = B. dessen Abstand von der Tafelebene gleich ÄAÄ' ist; analoges gilt für Q'. Der Schnittpunkt P unserer Hauptlinien ergiebt die Kante a = SP. Durch Umlegen der Seiten ac und ab in die Zeichenebene erhält man B und V in wahrer Größe. Die entsprechende Konstruktion ist nach den bereits behandelten Aufgaben 113 und 114 leicht zu verstehen.

116. Konstruktion des Dreikants aus zwei Seiten A, B und dem der Seite A gegenüberliegenden Winkel a.

[graphic][ocr errors]

1. Lösung (Fig. 91). Wir breiten die beiden Seiten A and B nebeneinander in die Zeichenebene aus, die wir mit der gesuchten Seite T zusammenfallen lassen. Nun drehen wir die Seite B um die Kante a, bis sie mit der Tafelebene den Winkel a einschließt. Indem wir dabei genau wie in 113 vorgehen, gewinnen wir P' und damit c' und erkennen, daß P den Tafelabstand PF' = PAP' besitzt. Das von P auf die gesuchte Kante b gefällte Lot PM hat die Länge P0M00, woraus sich das Lot P'M als Kathete eines Dreiecks mit der Hypotenuse PAMA = P0M00 und der Kathete PAP' ergiebt. Man braucht also nur um P' einen Kreis mit dem Radius P'MA zu ziehen, die gesuchte Kante b muß dann diesen Kreis berühren.

[graphic]

Fig. 91.

Damit ist r = Z_ a. b und b = i_ PAMAP' gefunden. Zur Kontrolle dient: SM= SM00.

Ist, wie im vorliegenden Beispiel, A < B, — folglich P0M00 < P0L und PAMA < PAL —, so schneidet der Kreis um P' die Kante a nicht und es giebt zwei ganz verschiedene Dreikante {abc und ab^), oder gar keines, wenn P0M00< PAP' ist. Ist dagegen A > B, so schneidet der Kreis um P' die Kante a und es giebt immer ein Dreikant, so lange A < B + T.

117. 2. Lösung (Fig. 92). Wir lassen jetzt die Seite B mit der Zeichenebene zusammenfallen. Durch die Kante a legen wir eine Ebene T mit dem Neigungswinkel a und um die Kante c als Achse einen Rotationskegel, indem wir die Seite A um ihre Kante c sich drehen lassen. Die gesuchte Kante b muß dann gleichzeitig auf jener Ebene T und diesem Kegel liegen. Um die Schnittlinie

« ZurückWeiter »