Satellite Orbits: Models, Methods, and Applications

Cover
Springer Science & Business Media, 2000 - 369 Seiten
3 Rezensionen
Satellite Orbits -Models, Methods, and Applications has been written as a compre hensive textbook that guides the reader through the theory and practice of satellite orbit prediction and determination. Starting from the basic principles of orbital mechanics, it covers elaborate force models as weH as precise methods of satellite tracking and their mathematical treatment. A multitude of numerical algorithms used in present-day satellite trajectory computation is described in detail, with proper focus on numerical integration and parameter estimation. The wide range of levels provided renders the book suitable for an advanced undergraduate or gradu ate course on spaceflight mechanics, up to a professional reference in navigation, geodesy and space science. Furthermore, we hope that it is considered useful by the increasing number of satellite engineers and operators trying to obtain a deeper understanding of flight dynamics. The idea for this book emerged when we realized that documentation on the methods, models and tools of orbit determination was either spread over numerous technical and scientific publications, or hidden in software descriptions that are not, in general, accessible to a wider community. Having worked for many years in the field of spaceflight dynamics and satellite operations, we tried to keep in c10se touch with questions and problems that arise during daily work, and to stress the practical aspects of orbit determination. Nevertheless, our interest in the underlying physics motivated us to present topics from first principles, and make the book much more than just a cookbook on spacecraft trajectory computation.
 

Was andere dazu sagen - Rezension schreiben

Nutzerbericht - Als unangemessen melden

sehr gut

Ausgewählte Seiten

Inhalt

Around the World in a Hundred Minutes
1
111 LowEarth Orbits
2
112 Orbits of Remote Sensing Satellites
3
113 Geostationary Orbits
4
114 Highly Elliptical Orbits
6
115 Constellations
7
12 Navigating in Space
8
122 A Matter of Effort
10
542 Free Eulerian Precession
182
543 Observation and Extrapolation of Polar Motion
183
544 Transformation to the International Reference Pole
185
Exercises
190
Satellite Tracking and Observation Models
193
612 Laser Tracking
202
613 The Global Positioning System
203
62 Tracking Data Models
208

Introductory Astrodynamics
15
21 General Properties of the TwoBody Problem
16
212 The Form of the Orbit
17
213 The Energy Integral
19
22 Prediction of Unperturbed Satellite Orbits
22
222 Solving Keplers Equation
23
223 The Orbit in Space
24
224 Orbital Elements from Position and Velocity
28
225 NonSingular Elements
29
23 GroundBased Satellite Observations
32
232 Satellite Motion in the Local Tangent Coordinate System
36
24 Preliminary Orbit Determination
39
241 Orbit Determination from Two Position Vectors
40
242 Orbit Determination from Three Sets of Angles
43
Exercises
47
Force Model
53
32 Geopotential
56
322 Some Special Geopotential Coefficients
59
323 Gravity Models
61
324 Recursions
66
325 Acceleration
68
33 Sun and Moon
69
332 LowPrecision Solar and Lunar Coordinates
70
333 Chebyshev Approximation
73
334 JPL Ephemerides
75
34 Solar Radiation Pressure
77
341 Eclipse Conditions
80
342 Shadow Function
81
35 Atmospheric Drag
83
351 The Upper Atmosphere
86
352 The HarrisPriester Density Model
89
353 The Jacchia 1971 Density Model
91
354 A Comparison of Upper Atmosphere Density Models
98
355 Prediction of Solar and Geomagnetic Indices
102
36 Thrust Forces
104
37 Precision Modeling
107
372 Earth Tides
108
373 Relativistic Effects
110
374 Empirical Forces
112
Exercises
113
Numerical Integration
117
41 RungeKutta Methods
118
412 General RungeKutta Formulas
120
413 Stepsize Control
121
414 RungeKuttaNystrom Methods
123
415 Continuous Methods
127
416 Comparison of RungeKutta Methods
129
42 Multistep Methods
132
422 AdamsBashforth Methods
134
423 AdamsMoulton and PredictorCorrector Methods
136
424 Interpolation
140
425 Variable Order and Stepsize Methods
141
426 Stoermer and Cowell Methods
143
427 Gauss Jackson or Second Sum Methods
145
428 Comparison of Multistep Methods
146
43 Extrapolation Methods
147
432 Extrapolation
148
433 Comparison of Extrapolation Methods
150
44 Comparison
151
Exercises
154
Time and Reference Systems
157
511 Ephemeris Time
160
512 Atomic Time
161
513 Relativistic Time Scales
162
514 Sidereal Time and Universal Time
165
52 Celestial and Terrestrial Reference Systems
169
53 Precession and Nutation
172
532 Coordinate Changes due to Precession
174
533 Nutation
178
54 Earth Rotation and Polar Motion
181
622 Angle Measurements
209
623 Range Measurements
213
624 Doppler Measurements
215
625 GPS Measurements
217
63 Media Corrections
219
632 Tropospheric Refraction
221
633 Ionospheric Refraction
225
Exercises
229
Linearization
233
71 TwoBody State Transition Matrix
235
712 KepleriantoCartesian Partial Derivatives
236
713 CartesiantoKeplerian Partial Derivatives
238
714 The State Transition Matrix and Its Inverse
239
72 Variational Equations
240
722 The Differential Equation of the Sensitivity Matrix
241
724 The Inverse of the State Transition Matrix
243
73 Partial Derivatives of the Acceleration
244
732 PointMass Perturbations
247
733 Solar Radiation Pressure
248
735 Thrust
249
74 Partials of the Measurements with Respect to the State Vector
250
75 Partials with Respect to Measurement Model Parameters
252
76 Difference Quotient Approximations
253
Exercises
255
Orbit Determination and Parameter Estimation
257
81 Weighted LeastSquares Estimation
258
811 Linearization and Normal Equations
260
812 Weighting
262
813 Statistical Interpretation
263
814 Consider Parameters
265
815 Estimation with A Priori Information
266
82 Numerical Solution of LeastSquares Problems
268
822 Householder Transformations
270
823 Givens Rotations
272
824 Singular Value Decomposition
274
83 Kalman Filtering
276
831 Recursive Formulation of LeastSquares Estimation
277
832 Sequential Estimation
280
833 Extended Kalman Filter
282
834 Factorization Methods
283
835 Process Noise
284
84 Comparison of Batch and Sequential Estimation
286
Exercises
289
Applications
293
911 A Linearized Orbit Model
294
912 Consider Covariance Analysis
297
913 The GEODA Program
299
914 Case Studies
300
92 RealTime Orbit Determination
303
922 The RTOD Program
306
923 Case Studies
307
93 Relay Satellite Orbit Determination
312
932 The TDRSOD Program
313
933 Case Study
315
Appendix A
319
A11 Modified Julian Date from the Calendar Date
321
A 12 Calendar Date from the Modified Julian Date
322
A2 GPS Orbit Models
324
A21 Almanac Model
325
A22 Broadcast Ephemeris Model
326
Appendix B
329
B2 The Enclosed CDROM
330
B22 System Requirements
331
B24 Compilation and Linking
332
B25 Index of Library Functions
335
List of Symbols
339
References
347
Index
361
Urheberrecht

Andere Ausgaben - Alle anzeigen

Häufige Begriffe und Wortgruppen

Beliebte Passagen

Seite 356 - Nerem. RS. Lerch. FJ. Marshall. JA. Pavlis. EC. Putney. BH. Tapley. BD. Eanes, RJ, Ries. JC, Schutz, BE, Shum, CK. Watkins. MM. Klosko. SM, Chan. JC, Luthcke. SB. Patel, GB. Pavlis. NK. Williamson. RG. Rapp. RH. Biancale. R., and Nouel, F. (1994). Gravity model development for TOPEX/POSEIDON: Joint Gravity Models 1 and 2.
Seite 357 - Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, Texas...
Seite 349 - On the Computation of the Spherical Harmonic Terms needed during the Numerical Integration of the Orbital Motion of an Artificial Satellite; Celestial Mechanics 2, 207-216 (1970).
Seite 350 - Fehlberg, E.: Classical fifth-, sixth-, seventh-, and eighth-order RungeKutta formulas with step-size control, NASA Technical Report, NASA TR R-287, Oct.
Seite 358 - A Simple, Efficient Starting Value for the Iterative Solution of Kepler's Equation,
Seite 355 - Putney, BH, Christodoulidis, DC, Smith, DE, Felsentreger, TL, Sanchez, BV, Klosko, SM, Pavlis, EC, Martin, TV, Robbins, JW, Williamson, RG, Colombo, OL, Rowlands, DD, Eddy, WF, Chandler, NL, Rachlin, KE, Patel, GB, Bhati, S. and Chinn, DS, 1988, A New Gravitational Model for the Earth From Satellite Tracking Data: GEM-T1, Journal of Geophysical Research, 93(B6), 6169-6215.
Seite 359 - Orientation of the JPL Ephemerides, DE200/LE200, to the Dynamical Equinox of J2000.

Verweise auf dieses Buch

Satellite Geodesy
Günter Seeber
Eingeschränkte Leseprobe - 2003
Geodäsie
Wolfgang Torge
Eingeschränkte Leseprobe - 2003
Alle Ergebnisse von Google Books »

Über den Autor (2000)

Dr. Oliver Montenbruck ist wissenschaftlicher Mitarbeiter des Deutschen Zentrums f?r Luft- und Raumfahrt in Oberpfaffenhofen.

Bibliografische Informationen