# Elements of Geometry and Trigonometry from the Works of A.M. Legendre: Revised and Adapted to the Course of Mathematical Instruction in the United States

A.S. Barnes & Company, 1854 - 432 Seiten
0 Rezensionen
Rezensionen werden nicht überprüft, Google sucht jedoch gezielt nach gefälschten Inhalten und entfernt diese

### Was andere dazu sagen -Rezension schreiben

Es wurden keine Rezensionen gefunden.

### Inhalt

 Propositions 21 BOOK II 47 BOOK III 57 Problems relating to the First and Third Books 76 BOOK IV 87 Problems relating to the Fourth Book 122 BOOK V 135 BOOK VI 156
 Multiplication by Logarithms 261 Problems 267 Table of Natural Sines 273 ANALYTICAL PLANE TRIGONOMETRY 297 of Formulas 306 Homogeneity of Terms 313 SPHERICAL TRIGONOMETRY 321 Napiers Analogies 329

 BOOK VII 174 BOOK VIII 202 BOOK IX 227 PAGE 245 PLANE TRIGONOMETRY 255
 Of Quadrantal Triangles 335 Area or Contents of a Surface 347 Area of a Regular Polygon 353 PAGE 358 Convex Surface of a Cone 364

### Beliebte Passagen

Seite 27 - If two triangles have two sides of the one equal to two sides of the...
Seite 227 - A spherical triangle is a portion of the surface of a sphere, bounded by three arcs of great circles.
Seite 256 - The logarithm of . the quotient of two numbers, is equal to the logarithm of the dividend diminished by the logarithm of the divisor.
Seite 97 - The square described on the hypothenuse of a right-angled triangle is equivalent to the sum of the squares described on the other two sides.
Seite 26 - The sum of any two sides of a triangle is greater than the third side.
Seite 271 - The circumference of every circle is supposed to be divided into 360 equal parts, called degrees...
Seite 93 - The area of a parallelogram is equal to the product of its base and altitude.
Seite 358 - CUBIC MEASURE 1728 cubic inches = 1 cubic foot 27 cubic feet = 1 cubic yard...
Seite 323 - A'B'C', and applying the law of cosines, we have cos a' = cos b' cos c' + sin b' sin c' cos A'. Remembering the relations a' = 180° -A, b' = 180° - B, etc. (this expression becomes cos A = — cos B cos C + sin B sin C cos a.
Seite 64 - Two equal chords are equally distant from the centre ; and of two unequal chords, the less is at the greater distance from the centre.