Leibnizens mathematische Schriften, Bände 4-5

Cover
A. Asher, 1850
0 Rezensionen
 

Was andere dazu sagen - Rezension schreiben

Es wurden keine Rezensionen gefunden.

Ausgewählte Seiten

Andere Ausgaben - Alle anzeigen

Häufige Begriffe und Wortgruppen

Beliebte Passagen

Seite 179 - Il a une étrange métaphysique, pleine de paradoxes. Entre autres, il croit que le monde et Dieu n'est qu'une même chose en substance, que Dieu est la substance de toutes choses, et que les créatures ne sont que des modes ou accidens. Mais j'ay remarqué que quelques démonstrations prétendues qu'il m'a montrées ne sont pas exactes.
Seite 128 - Mr. Boyle est mort, comme vous scaurez desia sans doute. Il paroit assez étrange qu'il n'ait rien basti sur tant d'expériences dont ses livres sont pleins...
Seite 34 - Il me semble que ses démonstrations prétendues ne sont pas des plus exactes, par exemple lorsqu'il dit que Dieu seul est une substance et que les autres choses sont des modes de la nature divine. Il me semble qu'il n'explique pas ce que c'est que substance.
Seite 260 - ... qu'on suppose les différences incomparablement petites. Je vis aussi que nécessairement les grandeurs différentielles se trouvent hors de la fraction et hors du' vinciilum , et qu'ainsi on peut, donner les tangentes sans se mettre en peine des irrationnelles et des fractions.
Seite 181 - Ceux qui nous ont donné des méthodes, donnent sans doute des beaux préceptes, mais non pas le moyen de les observer. Il faut, disent-ils, comprendre toute chose clairement et distinctement, il faut procéder des choses simples aux composées ; il faut diviser nos pensées etc. Mais cela ne sert pas beaucoup, si on ne nous dit rien davantage. Car lorsque...
Seite 181 - Car, lorsque la division de nos pensées n'est pas bien faite, elle brouille plus qu'elle n'éclaire. Il faut qu'un écuyer tranchant sache les jointures, sans cela il déchirera les viandes au lieu de les couper.
Seite 28 - Hnfin je ne vois point de quel biais vous pourriez appliquer vostre characteristiVI. que à toutes ces choses différentes qu'il semble que vous y vouliez réduire, comme les quadratures, l'invention des courbes par la propriété des tangentes, les racines irrationelles des Equations, les problèmes de Diophante, les plus courtes et plus belles constructions des problèmes géométriques. Et, ce qui me paroit encore le plus étrange, l'invention et l'explication des machines. Je vous le dis...
Seite 52 - ... direction du centre de gravité commun d'autant de mobiles qu'il ya de directions, si on s'imaginoit le mobile unique multiplié autant de fois pour faire réussir entièrement, et en...
Seite 85 - J'aime mieux un Leeuwenhoek qui me dit ce qu'il voit, qu'un Cartésien qui me dit ce qu'il pense. Il est pourtant nécessaire de joindre le raisonnement aux observations. Mais je finis en me qualifiant avec beaucoup de zèle etc.
Seite 20 - L'algèbre n'est autre chose que la caractéristique des nombres indéterminés ou des grandeurs. Mais elle n'exprime pas directement la situation, les angles et le mouvement, d'où vient qu'il est souvent difficile de réduire dans un calcul ce qui. est dans la figure, et qu'il est encor plus difficile de trouver des démonstrations et des constructions géométriques assez commodes lors même que le calcul d'Algèbre est tout fait. Mais...

Bibliografische Informationen