Multi-Objective Optimization using Evolutionary Algorithms

John Wiley & Sons, 05.07.2001 - 536 Seiten
Evolutionary algorithms are relatively new, but very powerful techniques used to find solutions to many real-world search and optimization problems. Many of these problems have multiple objectives, which leads to the need to obtain a set of optimal solutions, known as effective solutions. It has been found that using evolutionary algorithms is a highly effective way of finding multiple effective solutions in a single simulation run.
  • Comprehensive coverage of this growing area of research
  • Carefully introduces each algorithm with examples and in-depth discussion
  • Includes many applications to real-world problems, including engineering design and scheduling
  • Includes discussion of advanced topics and future research
  • Can be used as a course text or for self-study
  • Accessible to those with limited knowledge of classical multi-objective optimization and evolutionary algorithms

The integrated presentation of theory, algorithms and examples will benefit those working and researching in the areas of optimization, optimal design and evolutionary computing. This text provides an excellent introduction to the use of evolutionary algorithms in multi-objective optimization, allowing use as a graduate course text or for self-study.


Was andere dazu sagen - Rezension schreiben

Es wurden keine Rezensionen gefunden.


MultiObjective Optimization
Classical Methods
Evolutionary Algorithms
NonElitist MultiObjective Evolutionary Algorithms
Elitist MultiObjective Evolutionary Algorithms
Constrained MultiObjective Evolutionary Algorithms
Salient Issues of MultiObjective Evolutionary Algorithms
Applications of MultiObjective Evolutionary Algorithms

Andere Ausgaben - Alle anzeigen

Häufige Begriffe und Wortgruppen

Beliebte Passagen

Seite 508 - Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results.
Seite 489 - T 1996 Evolutionary Algorithms in Theory and Practice (New York: Oxford University Press...
Seite 494 - Fogel, LJ., Angeline, PJ and Fogel, DB (1995). An Evolutionary Programming Approach to Self-Adaptation on Finite State Machines.

Über den Autor (2001)

Kalyanmoy Deb is an Indian computer scientist. Since 2013, Deb has held the Herman E. & Ruth J. Koenig Endowed Chair in the Department of Electrical and Computing Engineering at Michigan State University, which was established in 2001.

Bibliografische Informationen