A System of Geometry and Trigonometry: Together with a Treatise on Surveying; Teaching Various Ways of Taking the Survey of a Field; Also to Protract the Same and Find the Area. Likewise, Rectangular Surveying; Or, an Accurate Method of Calculating the Area of Any Field Arithmetically, Without the Necessity of Plotting It. To the Whole are Added Several Mathematical Tables ... with a Particular Explanation ... and the Manner of Using Them ... |
Im Buch
Ergebnisse 1-5 von 5
Seite 156
Secant Co - Secant | M 0 9,0 : 1924 9.997619.02162 10.97838 10.00239
10.98076160 5 025201 755 02765 972351 245 97480155 10 03109 748 03361
96639 252 9689150 15 03690 7411 03949 96051 259 96310 45 201 04263 734
...
Secant Co - Secant | M 0 9,0 : 1924 9.997619.02162 10.97838 10.00239
10.98076160 5 025201 755 02765 972351 245 97480155 10 03109 748 03361
96639 252 9689150 15 03690 7411 03949 96051 259 96310 45 201 04263 734
...
Seite 157
Secant Co - Secant M 0 9,0 : 1924 9.99761 ] 9.02162 ] 10.97838 | 10.00239
10.98076160 5 025201 755 02765 97235 245 97480155 10 03109 748 03361
96639 252 9689150 03690 741 03949 96051 259 96310 45 201 04263 734
04528 ...
Secant Co - Secant M 0 9,0 : 1924 9.99761 ] 9.02162 ] 10.97838 | 10.00239
10.98076160 5 025201 755 02765 97235 245 97480155 10 03109 748 03361
96639 252 9689150 03690 741 03949 96051 259 96310 45 201 04263 734
04528 ...
Seite 159
Secant Co - Secant M. 0 9.41300 9.98494 ) 9.42805 10.57 1951 10.015061
10.58700 60 5 41535 98477 43057 56943 01523 58465 55 10 41768 98460
43308 56692 015401 58232501 42001 98443 43558 56442 015571 57999 45
201 ...
Secant Co - Secant M. 0 9.41300 9.98494 ) 9.42805 10.57 1951 10.015061
10.58700 60 5 41535 98477 43057 56943 01523 58465 55 10 41768 98460
43308 56692 015401 58232501 42001 98443 43558 56442 015571 57999 45
201 ...
Seite 160
Secant Co - Secant M. 0 9,48998 | 9.97821 | 9,51178 ) 10.48822 0.02179
10.5100260 51 49192 97800 51392 486081 022001 59808155 49385 ) 977791
51606 48394 02221 50615 50 15 49577 97759 51819 48181 02241 50423145
20 !
Secant Co - Secant M. 0 9,48998 | 9.97821 | 9,51178 ) 10.48822 0.02179
10.5100260 51 49192 97800 51392 486081 022001 59808155 49385 ) 977791
51606 48394 02221 50615 50 15 49577 97759 51819 48181 02241 50423145
20 !
Seite 162
Secant Co - Secant M 0 9.60931 9.96073 9.64858 10.35142 10.03927 10.390
69160 51 61073 960451 65028 ) 34972 03955 3892755 10 612141 96017
65197 34803 03983 38786150 15 613541 95988 65366 34634 04012 38646 45
20 ...
Secant Co - Secant M 0 9.60931 9.96073 9.64858 10.35142 10.03927 10.390
69160 51 61073 960451 65028 ) 34972 03955 3892755 10 612141 96017
65197 34803 03983 38786150 15 613541 95988 65366 34634 04012 38646 45
20 ...
Was andere dazu sagen - Rezension schreiben
Es wurden keine Rezensionen gefunden.
Andere Ausgaben - Alle anzeigen
SYSTEM OF GEOMETRY & TRIGONOME Abel 1765-1825 Flint,George Gillet,Frederick a. P. (Frederick Augu Barnard Keine Leseprobe verfügbar - 2016 |
SYSTEM OF GEOMETRY & TRIGONOME Abel 1765-1825 Flint,George Gillet,Frederick a. P. (Frederick Augu Barnard Keine Leseprobe verfügbar - 2016 |
Häufige Begriffe und Wortgruppen
according accurately added Angle Arch Base Bearing calculated called Chains Circle Co-Sine Sine Compass contained Course Decimals describe Diagonal Difference directions Dist Distance divided double draw drawn Elongation equal EXAMPLE Field FIELD BOOK Figure find the Angle find the Area four fourth give given greater half hand Hypothenuse Land Left Leg BC length less Line Links Logarithms manner measuring method Minutes multiply Natural Sines Needle North North Areas Note number of Degrees observe opposite parallel particular Perpendicular PLATE Plot Point practice preceding PROBLEM Product Proportion protract Quotient Radius Remainder represent Right Angled Rods Roods Rule Secant Co-Secant seen Side Sine Co-Sine Sine Sine Sine Square Square Root Star Station subtract Surveying Surveyor Table Tang Tangent Co-Secant Secant third Trapezoid Triangle TRIGONOMETRY true whole
Beliebte Passagen
Seite 28 - As the base or sum of the segments Is to the sum of the other two sides, So is the difference of those sides To the difference of the segments of the base.
Seite 27 - TO THEIR DIFFERENCE ; So IS THE TANGENT OF HALF THE SUM OF THE OPPOSITE ANGLES', To THE TANGENT OF HALF THEIR DIFFERENCE.
Seite 6 - The Circumference of every circle is supposed to be divided into 360 equal parts, called Degrees ; and each degree into 60 Minutes, each minute into 60 Seconds, and so on.
Seite 24 - In this case the" hypothenuse may be found by the square root without finding the angles ; according to the following PROPOSITION. IN EVERY RIGHT ANGLED TRIANGLE, THE SUM OF THE SQUARES OF THE TWO LEGS IS EQUAL TO THE SQUARE OF THE HYPOTHENUSE. In the above EXAMPLE, the square of AB 78.7 is 6193.69, the square of BC 89 is 7921 ; these added make 14114,69 the square root of which is nearest 119.
Seite 40 - Field work and protraction are truly taken and performed ; if not, an error must have been committed in one of them : In such cases make a second protraction ; if this agrees with the former, it is to be presumed the fault is in the Field work ; a re-survey must then be taken.
Seite 33 - To find the area of a trapezoid. RULE. Multiply half the sum of the two parallel sides by the perpendicular distance between them : the product will be the area.
Seite 6 - Therefore all radii of the same circle are equal. 13. The diameter of a circle is a right line drawn from one side of the circumference to the other, passing through the centre ; and it divides the circle into two equal parts, called semicircles ; as AB or DE.
Seite 40 - Let his attention first be directed to the map, and inform him that the top is north, the bottom south, the right hand east, and the left hand west.
Seite 23 - The square of the hypothenuse is equal to the sum of the squares of the other two sides ; as, 5033 402+302.