Lumped Elements for RF and Microwave Circuits

Cover
Artech House, 2003 - 488 Seiten
Annotation Due to the unprecedented growth in wireless applications over the past decade, development of low-cost solutions for RF and microwave communication systems has become of great importance. This practical new book is the first comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The books offers you an in-depth understanding of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges, and crossovers.
 

Ausgewählte Seiten

Inhalt

Introduction
1
12 Why Use Lumped Elements for RF and Microwave Circuits?
2
13 L C R Circuit Elements
4
14 Basic Design of Lumped Elements
6
141 Capacitor
7
142 Inductor
8
15 LumpedElement Modeling
9
16 Fabrication
11
72 Design Considerations
239
722 Multilayer Capacitor
241
723 QEnhancement Techniques
244
724 Voltage Tunable Capacitor
247
725 HighVoltage Operation
249
References
251
Resistors
253
82 Basic Definitions
255

17 Applications
12
References
13
Inductors
17
22 Basic Definitions
18
223 Mutual Inductance
20
225 Impedance
21
227 Quality Factor
22
228 SelfResonant Frequency
23
23 Inductor Configurations
24
24 Inductor Models
25
242 CoupledLine Approach
28
243 Mutual Inductance Approach
34
244 Numerical Approach
36
245 MeasurementBased Model
38
25 Coupling Between Inductors
45
252 HighResistivity Substrates
46
26 Electrical Representations
50
262 Network Representations
51
References
52
Printed Inductors
57
31 Inductors on Si Substrate
58
311 Conductor Loss
60
312 Substrate Loss
63
313 Layout Considerations
64
314 Inductor Model
65
315 QEnhancement Techniques
69
316 StackedCoil Inductor
80
317 Temperature Dependence
84
32 Inductors on GaAs Substrate
86
321 Inductor Models
87
322 Figure of Merit
88
324 QEnhancement Techniques
104
325 Compact Inductors
112
326 High Current Handling Capability Inductors
116
33 Printed Circuit Board Inductors
118
34 Hybrid Integrated Circuit Inductors
121
342 ThickFilm Inductors
124
343 LTCC Inductors
126
35 Ferromagnetic Inductors
127
References
129
Wire Inductors
137
412 Compact HighFrequency Inductors
144
42 Bond Wire Inductor
146
421 Single and Multiple Wires
147
422 Wire Near a Corner
150
423 Wire on a Substrate Backed by a Ground Plane
151
424 Wire Above a Substrate Backed by a Ground Plane
153
425 Curved Wire Connecting Substrates
154
426 Twisted Wire
155
43 Wire Models
156
433 MeasurementBased Model for Bond Wires
158
44 Magnetic Materials
160
References
161
Capacitors
163
52 Capacitor Parameters
165
522 Effective Capacitance
166
525 Quality Factor
167
528 Dissipation Factor or Loss Tangent
170
53 Chip Capacitor Types
171
532 Multiplate Capacitor
172
54 Discrete Parallel Plate Capacitor Analysis
173
542 FlatMounted Series Capacitor
176
543 FlatMounted Shunt Capacitor
177
544 MeasurementBased Model
178
55 Voltage and Current Ratings
181
553 Maximum Power Dissipation
182
56 Capacitor Electrical Representation
185
562 Network Representations
187
References
188
Monolithic Capacitors
191
61 MIM Capacitor Models
192
611 Simple Lumped Equivalent Circuit
193
612 Coupled MicrostripBased Distributed Model
194
613 Single MicrostripBased Distributed Model
198
614 EC Model for MIM Capacitor on Si
202
615 EM Simulations
204
62 HighDensity Capacitors
206
621 Multilayer Capacitors
208
622 UltraThinFilm Capacitors
211
623 HighK Capacitors
212
625 Ferroelectric Capacitors
214
63 Capacitor Shapes
216
631 Rectangular Capacitors
217
632 Circular Capacitors
218
64 Design Considerations
220
642 Tunable Capacitor
223
References
227
Interdigital Capacitors
229
71 Interdigital Capacitor Models
230
712 JInverter Network Equivalent Representation
235
713 FullWave Analysis
236
714 MeasurementBased Model
238
822 Temperature Coefficient
256
825 Maximum Frequency of Operation
257
831 Chip Resistors
258
84 HighPower Resistors
265
85 Resistor Models
267
851 EC Model
268
852 Distributed Model
269
853 Meander Line Resistor
270
86 Resistor Representations
272
87 Effective Conductivity
274
88 Thermistors
276
Via Holes
279
912 Via Hole Ground
281
92 Via Hole Models
282
921 Analytical Expression
283
922 Quasistatic Method
284
923 Parallel Plate Waveguide Model
286
924 Method of Moments
287
925 MeasurementBased Model
289
93 Via Fence
290
931 Coupling Between Via Holes
293
94 Plated Heat Sink Via
294
References
296
Airbridges and Dielectric Crossovers
299
102 Analysis Techniques
301
1022 FullWave Analysis
306
103 Models
308
1032 MeasurementBased Model
310
References
315
Transformers and Baluns
317
111 Basic Theory
318
1112 Analysis of Transformers
319
1113 Ideal Transformers
322
1114 Equivalent Circuit Representation
323
1115 Equivalent Circuit of a Practical Transformer
325
1116 Wideband Impedance Matching Transformers
326
1117 Types of Transformers
329
1122 Bond Wire Transformer
332
114 Ferrite Transformers
336
115 Parallel Conductor Winding Transformers on Si Substrate
339
116 Spiral Transformers on GaAs Substrate
341
1161 Triformer Balun
344
1162 PlanarTransformer Balun
345
References
349
LumpedElement Circuits
353
1212 Hybrids and Couplers
356
1213 Power DividersCombiners
370
1214 Matching Networks
372
1215 LumpedElement Biasing Circuit
377
122 Control Circuits
380
1221 Switches
381
1222 Phase Shifters
387
1223 Digital Attenuator
390
References
392
Fabrication Technologies
395
1311 Materials
396
1312 Mask Layouts
401
132 Printed Circuit Boards
402
1321 PCB Fabrication
404
1322 PCB Inductors
405
1331 MFC Fabrication
407
1332 MPC Applications
408
134 Hybrid Integrated Circuits
410
1342 ThickFilm Technology
412
1343 Cofired Ceramic and GlassCeramic Technology
414
135 GaAs MICs
416
1351 MMIC Fabrication
418
1352 MMIC Example
421
137 Micromachining Fabrication
424
References
425
Microstrip Overview
429
1412 Effect of Strip Thickness
431
142 Design Considerations
432
1421 Effect of Dispersion
433
1423 Quality Factor Q
435
1424 Enclosure Effect
438
1425 Frequency Range of Operation
443
1426 PowerHandling Capability
444
143 Coupled Microstrip Lines
456
1431 EvenMode Capacitance
457
1432 OddMode Capacitance
458
1433 Characteristic Impedances
459
144 Microstrip Discontinuities
460
145 Compensated Microstrip Discontinuities
461
1452 Chamfered Bend
462
1453 TJunction
463
References
465
Appendix
469
About the Author
471
Index
473
Urheberrecht

Andere Ausgaben - Alle anzeigen

Häufige Begriffe und Wortgruppen

Autoren-Profil (2003)

I.J. Bahl, Ph.D., is principal scientist at ITT GaAsTEK, Roanoke, VA.

Bibliografische Informationen