Elementary Geometry: Practical and Theoretical

Cover
University Press, 1903 - 355 Seiten
0 Rezensionen
Rezensionen werden nicht überprüft, Google sucht jedoch gezielt nach gefälschten Inhalten und entfernt diese

Im Buch

Was andere dazu sagen - Rezension schreiben

Es wurden keine Rezensionen gefunden.

Andere Ausgaben - Alle anzeigen

Häufige Begriffe und Wortgruppen

Beliebte Passagen

Seite 88 - If two triangles have two angles of the one equal to two angles of the other, each to each, and also one side of the one equal to the corresponding side of the other, the triangles are congruent.
Seite 269 - To describe an isosceles triangle, having each of the angles at the base double of the third angle.
Seite 206 - If a straight line be divided into any two parts, four times the rectangle contained by the whole line, and one of the parts, together with the square of the other part, is equal to the square of the straight line which is made up of the whole and that part.
Seite 342 - Pythagoras' theorem states that the square of the length of the hypotenuse of a right-angled triangle is equal to the sum of the squares of the lengths of the other two sides.
Seite 270 - If a straight line touch a circle, and from the point of contact a chord be drawn, the angles which this chord makes with the tangent are equal to the angles in the alternate segments.
Seite 186 - This sub-division shows that the square on the hypotenuse of the above right-angled triangle is equal to the sum of the squares on the sides containing the right angle.
Seite 206 - If a straight line be divided into two equal parts, and also into two unequal parts, the rectangle contained by the unequal parts, together with the square on the line between the points of section, is equal to the square on half the line.
Seite 136 - To draw a straight line through a given point parallel to a given straight line. Let A be the given point, and BC the given straight line.
Seite 214 - A point moves so that the sum of the squares of its distances from the points (0, 0), (1, 0) is constant.
Seite 123 - The difference between any two sides of a triangle is less than the third side.

Bibliografische Informationen