Riemann's Zeta FunctionSuperb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix. |
Was andere dazu sagen - Rezension schreiben
Es wurden keine Rezensionen gefunden.
Inhalt
III | 1 |
IV | 6 |
V | 7 |
VI | 9 |
VII | 11 |
VIII | 12 |
IX | 15 |
X | 16 |
LV | 134 |
LVI | 136 |
LVII | 137 |
LVIII | 141 |
LIX | 145 |
LX | 148 |
LXI | 155 |
LXII | 162 |
XI | 18 |
XII | 20 |
XIII | 22 |
XIV | 23 |
XV | 25 |
XVI | 26 |
XVII | 29 |
XVIII | 31 |
XIX | 33 |
XX | 36 |
XXI | 37 |
XXII | 39 |
XXIII | 40 |
XXIV | 41 |
XXV | 42 |
XXVII | 43 |
XXVIII | 45 |
XXIX | 46 |
XXX | 48 |
XXXI | 50 |
XXXII | 54 |
XXXIII | 56 |
XXXIV | 58 |
XXXV | 61 |
XXXVI | 62 |
XXXVII | 66 |
XXXVIII | 68 |
XXXIX | 70 |
XL | 72 |
XLI | 76 |
XLII | 78 |
XLIII | 79 |
XLIV | 81 |
XLV | 84 |
XLVI | 88 |
XLVII | 91 |
XLVIII | 96 |
XLIX | 98 |
L | 106 |
LI | 114 |
LII | 119 |
LIII | 127 |
LIV | 132 |
LXIII | 164 |
LXIV | 166 |
LXV | 171 |
LXVI | 172 |
LXVII | 175 |
LXVIII | 179 |
LXIX | 182 |
LXX | 183 |
LXXI | 187 |
LXXII | 188 |
LXXIII | 190 |
LXXIV | 193 |
LXXV | 195 |
LXXVI | 199 |
LXXVII | 203 |
LXXVIII | 205 |
LXXIX | 206 |
LXXX | 209 |
LXXXI | 212 |
LXXXII | 213 |
LXXXIII | 215 |
LXXXIV | 216 |
LXXXV | 217 |
LXXXVI | 218 |
LXXXVII | 226 |
LXXXVIII | 229 |
LXXXIX | 237 |
XC | 246 |
XCI | 260 |
XCIII | 263 |
XCIV | 268 |
XCV | 269 |
XCVII | 273 |
XCVIII | 278 |
XCIX | 281 |
C | 284 |
CI | 288 |
CII | 298 |
CIII | 299 |
CIV | 306 |
| 311 | |
Andere Ausgaben - Alle anzeigen
Häufige Begriffe und Wortgruppen
analytic applied approaches zero approximation assumed average axis bounded circle coefficients complex computations Consider const constant continuation converges course decreases defined definition denote derivative desired differs domain easily equal estimate Euler evaluation example expression fact factor Finally finite follows formula Fourier function functional equation given gives Gram grows halfplane hand hence identity II(s imaginary implies increases inequality infinite integral interval inversion least less Li(x limit log x method modulus multiple namely natural negative Note obtained operator pole positive prime number theorem proof proved range rapidly remains result Riemann hypothesis roots Section sense shown shows simple statement step sufficiently large term termwise theorem theory tion transform true valid zero

