The Gene: An Intimate History

Cover
Simon and Schuster, 17.05.2016 - 592 Seiten
The #1 NEW YORK TIMES Bestseller
A New York Times Notable Book
A Washington Post and Seattle Times Best Book of the Year


From the Pulitzer Prize–winning author of The Emperor of All Maladies—a fascinating history of the gene and “a magisterial account of how human minds have laboriously, ingeniously picked apart what makes us tick” (Elle).

“Dr. Siddhartha Mukherjee dazzled readers with his Pulitzer Prize-winning The Emperor of All Maladies in 2010. That achievement was evidently just a warm-up for his virtuoso performance in The Gene: An Intimate History, in which he braids science, history, and memoir into an epic with all the range and biblical thunder of Paradise Lost” (The New York Times). In this biography Mukherjee brings to life the quest to understand human heredity and its surprising influence on our lives, personalities, identities, fates, and choices.

“Mukherjee expresses abstract intellectual ideas through emotional stories…[and] swaddles his medical rigor with rhapsodic tenderness, surprising vulnerability, and occasional flashes of pure poetry” (The Washington Post). Throughout, the story of Mukherjee’s own family—with its tragic and bewildering history of mental illness—reminds us of the questions that hang over our ability to translate the science of genetics from the laboratory to the real world. In riveting and dramatic prose, he describes the centuries of research and experimentation—from Aristotle and Pythagoras to Mendel and Darwin, from Boveri and Morgan to Crick, Watson and Franklin, all the way through the revolutionary twenty-first century innovators who mapped the human genome.

“A fascinating and often sobering history of how humans came to understand the roles of genes in making us who we are—and what our manipulation of those genes might mean for our future” (Milwaukee Journal-Sentinel), The Gene is the revelatory and magisterial history of a scientific idea coming to life, the most crucial science of our time, intimately explained by a master. “The Gene is a book we all should read” (USA TODAY).
 

Was andere dazu sagen - Rezension schreiben

Bewertungen von Nutzern

5 Sterne
171
4 Sterne
114
3 Sterne
41
2 Sterne
6
1 Stern
5

LibraryThing Review

Nutzerbericht  - waldhaus1 - www.librarything.com

I think I have a pretty good understanding of genetics, DNA, and cell biology. Mukherjee makes it into a great and thought provoking story. After a well done recapitulation of the history of the ... Vollständige Rezension lesen

LibraryThing Review

Nutzerbericht  - Elizabeth088 - www.librarything.com

A challenging read for me, given its length and unfamiliar subject material. Yet, I’m glad that I persevered as it gave me a better understanding of these important scientific advances that will ... Vollständige Rezension lesen

Inhalt

Families
1
The Missing Science of Heredity
15
In the Sum of the Parts There Are Only the Parts
87
The Dreams of Geneticists
201
The Proper Study of Mankind Is Man
253
Through the Looking Glass
327
PostGenome
415
Bheda Abheda
485
Acknowledgments
497
Notes
505
Selected Bibliography
551
Urheberrecht

Andere Ausgaben - Alle anzeigen

Häufige Begriffe und Wortgruppen

Über den Autor (2016)

The Gene The Walled Garden
The students of heredity, especially, understand all of their subject except their subject. They were, I suppose, bred and born in that brier-patch, and have really explored it without coming to the end of it. That is, they have studied everything but the question of what they are studying.

--G. K. Chesterton, Eugenics and Other Evils

Ask the plants of the earth, and they will teach you.

--Job 12:8

The monastery was originally a nunnery. The monks of Saint Augustine''s Order had once lived--as they often liked to grouse--in more lavish circumstances in the ample rooms of a large stone abbey on the top of a hill in the heart of the medieval city of Brno (Brno in Czech, Brünn in German). The city had grown around them over four centuries, cascading down the slopes and then sprawling out over the flat landscape of farms and meadowlands below. But the friars had fallen out of favor with Emperor Joseph II in 1783. The midtown real estate was far too valuable to house them, the emperor had decreed bluntly--and the monks were packed off to a crumbling structure at the bottom of the hill in Old Brno, the ignominy of the relocation compounded by the fact that they had been assigned to live in quarters originally designed for women. The halls had the vague animal smell of damp mortar, and the grounds were overgrown with grass, bramble, and weeds. The only perk of this fourteenth-century building--as cold as a meathouse and as bare as a prison--was a rectangular garden with shade trees, stone steps, and a long alley, where the monks could walk and think in isolation.

The friars made the best of the new accommodations. A library was restored on the second floor. A study room was connected to it and outfitted with pine reading desks, a few lamps, and a growing collection of nearly ten thousand books, including the latest works of natural history, geology, and astronomy (the Augustinians, fortunately, saw no conflict between religion and most science; indeed, they embraced science as yet another testament of the workings of the divine order in the world). A wine cellar was carved out below, and a modest refectory vaulted above it. One-room cells, with the most rudimentary wooden furniture, housed the inhabitants on the second floor.

In October 1843, a young man from Silesia, the son of two peasants, joined the abbey. He was a short man with a serious face, myopic, and tending toward portliness. He professed little interest in the spiritual life--but was intellectually curious, good with his hands, and a natural gardener. The monastery provided him with a home, and a place to read and learn. He was ordained on August 6, 1847. His given name was Johann, but the friars changed it to Gregor Johann Mendel.

For the young priest in training, life at the monastery soon settled into a predictable routine. In 1845, as part of his monastic education, Mendel attended classes in theology, history, and natural sciences at Brno''s Theological College. The tumult of 1848--the bloody populist revolutions that swept fiercely through France, Denmark, Germany, and Austria and overturned social, political, and religious orders--largely passed him by, like distant thunder. Nothing about Mendel''s early years suggested even the faintest glimmer of the revolutionary scientist who would later emerge. He was disciplined, plodding, deferential--a man of habits among men in habits. His only challenge to authority, it seemed, was his occasional refusal to wear the scholar''s cap to class. Admonished by his superiors, he politely complied.

In the summer of 1848, Mendel began work as a parish priest in Brno. He was, by all accounts, terrible at the job. "Seized by an unconquerable timidity," as the abbot described it, Mendel was tongue-tied in Czech (the language of most parishioners), uninspiring as a priest, and too neurotic to bear the emotional brunt of the work among the poor. Later that year, he schemed a perfect way out: he applied for a job to teach mathematics, natural sciences, and elementary Greek at the Znaim High School. With a helpful nudge from the abbey, Mendel was selected--although there was a catch. Knowing that he had never been trained as a teacher, the school asked Mendel to sit for the formal examination in the natural sciences for high school teachers.

In the late spring of 1850, an eager Mendel took the written version of the exam in Brno. He failed--with a particularly abysmal performance in geology ("arid, obscure and hazy," one reviewer complained of Mendel''s writing on the subject). On July 20, in the midst of an enervating heat wave in Austria, he traveled from Brno to Vienna to take the oral part of the exam. On August 16, he appeared before his examiners to be tested in the natural sciences. This time, his performance was even worse--in biology. Asked to describe and classify mammals, he scribbled down an incomplete and absurd system of taxonomy--omitting categories, inventing others, lumping kangaroos with beavers, and pigs with elephants. "The candidate seems to know nothing about technical terminology, naming all animals in colloquial German, and avoiding systematic nomenclature," one of the examiners wrote. Mendel failed again.

In August, Mendel returned to Brno with his exam results. The verdict from the examiners had been clear: if Mendel was to be allowed to teach, he needed additional education in the natural sciences--more advanced training than the monastery library, or its walled garden, could provide. Mendel applied to the University of Vienna to pursue a degree in the natural sciences. The abbey intervened with letters and pleas; Mendel was accepted.

In the winter of 1851, Mendel boarded the train to enroll in his classes at the university. It was here that Mendel''s problems with biology--and biology''s problems with Mendel--would begin.



The night train from Brno to Vienna slices through a spectacularly bleak landscape in the winter--the farmlands and vineyards buried in frost, the canals hardened into ice-blue venules, the occasional farmhouse blanketed in the locked darkness of Central Europe. The river Thaya crosses the land, half-frozen and sluggish; the islands of the Danube come into view. It is a distance of only ninety miles--a journey of about four hours in Mendel''s time. But the morning of his arrival, it was as if Mendel had woken up in a new cosmos.

In Vienna, science was crackling, electric--alive. At the university, just a few miles from his back-alley boardinghouse on Invalidenstrasse, Mendel began to experience the intellectual baptism that he had so ardently sought in Brno. Physics was taught by Christian Doppler, the redoubtable Austrian scientist who would become Mendel''s mentor, teacher, and idol. In 1842, Doppler, a gaunt, acerbic thirty-nine-year-old, had used mathematical reasoning to argue that the pitch of sound (or the color of light) was not fixed, but depended on the location and velocity of the observer. Sound from a source speeding toward a listener would become compressed and register at a higher pitch, while sound speeding away would be heard with a drop in its pitch. Skeptics had scoffed: How could the same light, emitted from the same lamp, be registered as different colors by different viewers? But in 1845, Doppler had loaded a train with a band of trumpet players and asked them to hold a note as the train sped forward. As the audience on the platform listened in disbelief, a higher note came from the train as it approached, and a lower note emanated as it sped away.

Sound and light, Doppler argued, behaved according to universal and natural laws--even if these were deeply counterintuitive to ordinary viewers or listeners. Indeed, if you looked carefully, all the chaotic and complex phenomena of the world were the result of highly organized natural laws. Occasionally, our intuitions and perceptions might allow us to grasp these natural laws. But more commonly, a profoundly artificial experiment--loading trumpeters on a speeding train--might be necessary to understand and demonstrate these laws.

Doppler''s demonstrations and experiments captivated Mendel as much as they frustrated him. Biology, his main subject, seemed to be a wild, overgrown garden of a discipline, lacking any systematic organizing principles. Superficially, there seemed to be a profusion of order--or rather a profusion of Orders. The reigning discipline in biology was taxonomy, an elaborate attempt to classify and subclassify all living things into distinct categories: Kingdoms, Phylae, Classes, Orders, Families, Genera, and Species. But these categories, originally devised by the Swedish botanist Carl Linnaeus in the mid-1700s, were purely descriptive, not mechanistic. The system described how to categorize living things on the earth, but did not ascribe an underlying logic to its organization. Why, a biologist might ask, were living things categorized in this manner? What maintained its constancy or fidelity: What kept elephants from morphing into pigs, or kangaroos into beavers? What was the mechanism of heredity? Why, or how, did like beget like?



The question of "l

Bibliografische Informationen