Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures

Cover
John Wiley & Sons, 26.09.2011 - 564 Seiten
Quantum Wells, Wires and Dots, 3rd Edition is aimed at providing all the essential information, both theoretical and computational, in order that the reader can, starting from essentially nothing, understand how the electronic, optical and transport properties of semiconductor heterostructures are calculated. Completely revised and updated, this text is designed to lead the reader through a series of simple theoretical and computational implementations, and slowly build from solid foundations, to a level where the reader can begin to initiate theoretical investigations or explanations of their own.
 

Andere Ausgaben - Alle anzeigen

Häufige Begriffe und Wortgruppen

Autoren-Profil (2011)

Paul Harrison is currently working in the Institute of Microwaves an photonics (IMP), which is a research institute within the School of Electronic and Electrical Engineering at the University of Leeds in the United Kingdom. he can always be fond on the web, at the time of writing at:

http://www.ee.leeds.ac.uk/homes/ph/

and always answers email. Currently he can be reached at:

p.harrison@leeds.ac.uk or p.harrison@physics.org

Paul is working on a wide variety of projects, most of which centre around exploiting quantum mechanics for the creation of novel opto-electronic devices, largely, but not exclusively, in semiconductor Quantum Wells, Wires and Dots. Up-to-date information can be found on his web page. He is always looking for exceptionally well-qualified and motivated students to study for a PhD degree with him-if interested, please don't hesitate to contact him.

Zoran Ikonic was Professor at the University of Belgrade and is now also a researcher in the IMP. His research interests and experience include the full width of semiconductor physics and optoelectronic devices, in particular, band structure calculations, strainlayered systems, carrier scattering theory, non-linear optics, as well as conventional and quantum mechanical methods for device optimization.

Vladimir Jovanovic completed his PhD at the IMP on physical models of quantum well infrared photodetectors and quantum cascade lasers in GaN- and GaAs-based materials for near-, mid- and far-infrared (terahertz) applications.

Marco Califano is a Royal Society University Research Fellow bas3ed in the IMP at Leeds whose main interests focus on atomistic Pseudopotential modelling of the electronic and optical properties of semiconductor nanostructures of different materials for applications in photovoltaics.

Craig A. Evans completed his PhD on the optical and thermal properties of quantum cascade lasers in the School of Electronic and Electrical Engineering, University of Leeds in 2008. He then worked as a Postdoctoral Research Assistant in the IMP working in the field of rare-earth doped fibre lasers and integrated photonic device modelling and has now joined the staff of the school.

Dragan Indjin is an Academic Research Fellow in the IMP and has research interests in semiconductor nanostructures, non-linear optics. quantum computing and spintronics.

Bibliografische Informationen